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Symmetric and Non-Symmetric Bases of Quantum
Integrable Particle Systems with
Long-Range Interactions
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We study in an algebraic manner the symmetric basis of the Calogero model
and the non-symmetric basis of the corresponding Calogero model with dis-
tinguishable particles. The Rodrigues formulas are presented for the polynomial
parts of both bases. The square norm of the non-symmetric basis is evaluated.
Symmetrization of the non-symmetric basis reproduces the symmetric basis and
enables us to calculate its square norm.

KEY WORDS: Quantum integrable system; long-range interaction; Calogero
model; Hi�Jack polynomial; multivariable Hermite polynomial; Weyl group;
Dunkl�Cherednik operator; Rodrigues formula.

1. INTRODUCTION

We call a quantum Hamiltonian system to be integrable when it has the
same number of independent and mutually commutative conserved
operators as its degrees of freedom. This definition is an extension of the
Liouville theorem in classical mechanics. From a viewpoint of the range of
interactions, we can classify integrable systems into two types, that is,
systems with short-range interactions and those with long-range interactions.
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In 1971, Calogero introduced the quantum many-body system with
inverse-square and harmonic interactions in a one-dimensional space.(3) He
obtained the exact energy eigenvalue of the model through the separation
of variables. Since then, there have been many works on the properties and
the extensions of classical and quantum long-range interaction systems,
including those by Sutherland, Moser, Olshanetsky and Perelomov.(22, 24, 25)

We adopt the Calogero�Moser�Sutherland (CMS) models as the generic
name for one-dimensional many-body systems with inverse-square long-
range interactions. Their classical and quantum integrability has been
studied extensively from various points of view. It is, however, rather recent
that the eigenstates for some of quantum CMS models are investigated in
a systematic manner. The aim of the present paper is a report on such a
development.

In this article, we consider the quantum Calogero model described by
the following Hamiltonian:

H� C :=
1
2

:
N

j=1
\&

�2

�x2
j

+|2x2
j ++ :

1� j<k�N

g
(x j&xk)2 (1.1)

We write the coupling parameter as g=a(a&1) and assume a # R�1 and
| # R>0 . Due to the symmetries of their variables [xj ], the model is some-
times called the AN&1 -type Calogero model. Although we mostly deal with
the Calogero model in what follows, the approach we shall take for this
model can be extended to some of the other CMS models.(17�21, 33)

This paper is organized as follows. In Section 2, we introduce the
AN&1-type root system, the associated Weyl group and notations. These
preliminaries imply extensions of the method to other quantum CMS
models. In Section 3, we construct the symmetric basis of the Calogero
model. The polynomial parts of the eigenstates are algebraically constructed.
We call the obtained expressions the Rodrigues formulas. In Section 4, we
present the non-symmetric basis of the Calogero model with distinguish-
able particles. The Rodrigues formula for the polynomial parts is derived.
The square norm of the non-symmetric basis is evaluated also in an
algebraic manner. We further discuss the relationship between the sym-
metric basis and the non-symmetric one. The final section is devoted to the
summary.

2. PRELIMINARIES

In order to investigate the symmetric and non-symmetric bases of the
Calogero model, we begin with a root system and the associated Weyl
group. Let I8 =[1, 2,..., N&1] and I=[1, 2,..., N ] be sets of indices and V
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be an N-dimensional real vector space with positive definite bilinear form
( } , } ). We take an orthogonal basis [=j | j # I ] of V such that (=j , =k) =$ jk .
We introduce the AN&1 -type root system R :=[= j&=k | j, k # I, j{k]/V
associated with the simple Lie algebra of type AN&1 . A root basis of R is
defined by 6 :=[:j==j&=j+1 | j # I8 ]. R+ denotes the set of positive roots
relative to 6 and R& :=&R+ .

We consider a reflection on V with respect to the hyperplane orthogonal
to a root : # R, and express it by s:(+) :=+&(:6, +): where :6=2:�(:, :)
is a coroot corresponding to : # R. The reflections [sj :=s:j

| :j # 6]
generate the symmetric group SN which is isomorphic to the AN&1-type
Weyl group W&SN . For each w # W, we define the following set of
positive roots:

Rw :=R+ & w&1R&

If we take a shortest expression w=sjl
} } } sj2

sj1
, the set Rw is expressed by

Rw=[: j1
, sj1

(:j2
),..., sj1

sj2
} } } sjl&1

(:jl
)]

We introduce lattices P :=�j # I Z�0 =j and P+ :=[+=�j # I + j=j # P | +1�
+2� } } } �+N�0] whose elements are called a composition and a partition
respectively. Let W(+) :=[w(+), w # W ] be the W-orbit of + # P. In a
W-orbit W(+), there exists a unique partition ++ # P+ such that +=
w(++) # P(w # W ). As usual, the Weyl vector is defined by

\ := 1
2 :

: # R+

:= 1
2 :

j # I

(N&2j+1) =j

We identify the elements of the lattice P with those of polynomial ring
with N variables over C, x + :=x+1

1 x+2
2 } } } x+N

N # C[x]. Then, in terms of the
coordinate exchange operators [Kjk] defined by

(Kjk f )(..., x j ,..., xk ,...) := f (..., xk ,..., x j ,...)

the action of the operators [Kjj+1 | j # I8 ] on C[x] are written as

Kjj+1(x +)=xsj (+), for x + # C[x]

3. SYMMETRIC BASIS OF CALOGERO MODEL

The energy spectrum of the Calogero model (1.1) is given by(25)

E+=| |+|+ 1
2|N(Na+(1&a))
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where |+| :=�j # I + j is the weight of the partition +=� j # I +j=j # P+ . One
readily sees that there exists a large degeneracy in the spectrum. The
degeneracy implies the necessity of additional conserved operators. The
quantum Lax formulation provides the commutative conserved operators
for the Calogero model.(26, 27) We found that the second conserved operator
in fact solves the large degeneracy; we obtain the symmetric orthogonal
basis of the Calogero model by diagonalizing the first and second conserved
operators.(29)

We start from the following commutative operators called the Dunkl
operators, (7)

{j :=
�

�xj
+a :

k({ j )

1
xj&xk

(1&Kjk), for j # I
(3.1)

[{j , {k] = 0, for j, k # I

The commutative operators of Dunkl type play a crucial role for the quan-
tum integrability of the CMS models. We call such approach the exchange
operator formulation(23) or the Dunkl�Cherednik operator formulation. (4)

It was shown that the commutativity of these operators comes from the
Yang�Baxter relations. (12, 13) For the CMS models with interactions of tri-
gonometric type, the Yang�Baxter relations appear in the form of the affine
Hecke algebras.(4, 5, 17, 21)

For the non-interaction case, the Calogero Hamiltonian (1.1) reduces
to that of the quantum harmonic oscillators. In analogous way to the
definition of the creation, annihilation and number operators of the quan-
tum harmonic oscillators, we introduce the creation-, annihilation- and
number-like operators of the Calogero model,

:j* :=x j&
1

2|
{j , :j :={j , nj :=:j*:j , for j # I (3.2)

They satisfy

[:j , :k]=[:j*, :k*]=0, for j, k # I

[:j , :k*]=$jk \1+a :
l{ j

Kjl+&a(1&$jk) Kjk , for j, k # I (3.3)

[nj , nk]=a(nk&n j ) Kjk , for j, k # I

We define the inner product:

( f, g) a, | :=|
�

&�
`
j # I

dx j |,g(x)|2 f (x) g(x), for f, g # C[x] (3.4)
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where ,g is the ground state wave function,

,g(x) := `
1� j<k�N

|xj&xk |a exp \&1
2| :

j # I

x2
j + (3.5)

Here we have taken the symmetric (bosonic) ground state wave function.
Note that the creation-like operators [:j*] and the annihilation-like
operators [:j ] are in the relation: (:j f, g) a, |=( f, :j*g) a, | . Then the
number-like operators [nj ] are Hermitian with respect to the inner
product (3.4), that is, (nj f, g) a, |=( f, nj g) a, | . Due to a nontrivial rela-
tion between the creation- and annihilation-like operators, all the sym-
metric states constructed by the creation-like operators are not orthogonal
with respect to the inner product (3.4). To make an orthogonal basis, we
use the commutative conserved operators which are Hermitian with respect
to the inner product (3.4). The power sums of the number-like operators
[nj ] give a commutative family of operators [Il | l # I ],

Il := :
j # I

(nj )
l }Sym

, for l # I
(3.6)

[Il , Im] = 0, for l, m # I

where |Sym means that their operands are restricted to the symmetric func-
tion space. Through the similarity transformation by use of ,g , we find that
the operators

I� l :=,g b Il b ,&1
g , for l # I (3.7)

are the commutative conserved operators of the Calogero model. It is to be
remarked that they are equivalent to those derived by the quantum Lax
formulation.(26, 27) The first conserved operator indeed corresponds to the
Calogero Hamiltonian |I� 1=H� C . There exists a family of symmetric poly-
nomials J+ # C[x]W, (+ # P+) which are joint eigenvectors of operators I1

and I2 ,

J+=m++ :
&<d + or |&|<|+|

v+& \a,
1

2|+ m& , for + # P+

I1J+= :
j # I

+ jJ+ (3.8)

I2J+= :
j # I

(+2
j +a(N+1&2j ) + j ) J+
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which are named Hi�Jack polynomials.(30) In the defining relations (3.8), we
have used the monomial symmetric functions m+(x) :=�& # W(+) x& # C[x]W,
(+ # P+) and the dominance order <d on P+ ,

&�d + (&, + # P+) � |&|=|+|, and :
l

k=1

&k� :
l

k=1

+k for all l # I

Thus the first and second conserved operators of the Calogero model I� 1
and I� 2 have the joint eigenvectors 8+ , (+ # P+) which can be expressed by
products of the ground state wave function ,g and the Hi�Jack polyno-
mials J+ ,

8+(x)=,g(x) J+(x)

In fact, the states 8+ are the joint eigenstates of all the conserved operators
[I� l].(31) It is interesting to observe that the Hi�Jack polynomial reduces to
the Jack polynomial(9, 16) in the limit, | � �.

Lapointe and Vinet showed the Rodrigues formula for the Jack poly-
nomial by means of the raising operators.(14) Extending their method to the
Calogero model, we present the Rodrigues formula for the Hi�Jack polyno-
mial.(30, 31) We introduce the raising operators [B+

k | k # I ] as

B+
k := :

J�I, |J |=k

:J*nk, J , for k # I8 , B+
N :=:1*:2* } } } :*N (3.9)

where

:J* := `
j # J

:j* , for J�I

nm, J :=(nj1
+ma)(n j2

+(m+1) a) } } } (n jk
+(m+k&1) a), for k=|J |

and |J | means the number of elements in a subset J�I. Applying the
raising operators [B+

k ] to the reference state J0=1, we can show that the
Rodrigues formula for the Hi�Jack polynomial J+ , (+ # P+) is given by

J+ = C &1
+ (B+

N ) +N (B+
N&1) +N&1&+N } } } (B+

1 ) +1&+2 J0

(3.10)
C+ := `

k # I

(a)+k&+k+1
(2a++k&1&+k)+k&+k+1

(ka++1&+k)+k&+k+1
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where C+ is the coefficient of the top term m+ , (;)n=;(;+1) } } }
(;+n&1) and (;)0=1. By use of the Rodrigues formula (3.10), we proved
that the expansion coefficients are polynomials of a and 1�2| with integer
coefficients (integrality).(30, 31) The Hi�Jack polynomial is found to be a
multivariable generalization of the Hermite polynomial, which was intro-
duced by Lassalle and Macdonald from the viewpoint of a deformation of
an orthogonal polynomial.(15)

4. NONSYMMETRIC BASIS OF CALOGERO MODEL WITH
DISTINGUISHABLE PARTICLES

Motivated by the Haldane-Shastry spin chains, the Calogero models
with spin degrees of freedom were introduced.(8, 28) The Hamiltonian of the
spin Calogero model is given by

H� Spin :=
1
2

:
N

j=1
\&

�2

�x2
j

+|2x2
j ++ :

1� j<k�N

1
(x j&xk)2 a(a&Pjk) (4.1)

where the operator Pjk is the spin exchange operator. In the case of SU(2)
spin-1�2, for example, Pjk=(1+_j } _k)�2 with the Pauli spin matrices
_=(_x, _ y, _z). The eigenfunction of the spin Calogero model is expressed
by a linear combination of products of the orbital and spin parts. When the
whole eigenfunction is symmetric under the exchange of particles, i.e.,
KjkP jk=1, the spin Calogero model is mapped to

H� C :=
1
2

:
N

j=1
\&

�2

�x2
j

+|2x2
j ++ :

1� j<k�N

1
(x j&xk)2 a(a&K jk) (4.2)

Recall that Kjk is the coordinate exchange operator. It is important to
notice that Kjk is identified with Pjk only in the symmetric case. We refer
to the model (4.2) as the Calogero model with distinguishable particles and
construct the eigenstates which correspond to the orbital parts of the spin
Calogero model (4.1).

The Dunkl�Cherednik operator formulation provides the commutative
conserved operators for the Calogero model with distinguishable particles
(4.2) as well. By use of the operators (3.2), we introduce the differential
operators [dj | j # I ],

dj :=:j*:j+a :
N

k= j+1

Kjk (4.3)
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which we call the Cherednik operators. The Cherednik operators [dj ] and
the coordinate exchange operators [Kj j+1] satisfy the following relations:

[dj , dk]=0, for j, k # I

djKj, j+1&K j, j+1dj+1=a, for j, k # I8 (4.4)

djKk, k+1=Kk, k+1d j , for j{k, k+1

Note that they are commutative and are not W-invariant. For the later
discussions, we write

d * := :
j # I

*jdj , for * # P (4.5)

The power sums of the Cherednik operators [dj ] (without any restriction
to their operands) give a family of independent commutative operators,

Il := :
j # I

(dj )
l, for l # I (4.6)

The first conserved operator I1 corresponds to

HC :=| :
j # I \dj&

1
2

(N&1) a+
= :

N

j=1
\&

1
2

�2

�x2
j

+|xj
�

�x j+
&a :

1� j<k�N \
1

xj&xk \
�

�xj
&

�
�xk++

K jk&1
(xj&xk)2+ (4.7)

which changes into the original Hamiltonian (4.2) by use of ,g ,

ĤC=| :
N

j=1

,g b \dj&
1
2

(N&1) a+ b ,&1
g

Since the Cherednik operators [dj ] commute with the transformed
Hamiltonian HC , we consider the operators [,g b dj b ,&1

g ] as the com-
mutative conserved operators of the Calogero model with distinguishable
particles. We note that [dj ] are Hermitian with respect to the inner
product (3.4).
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The joint eigenvectors for the commutative Cherednik operators [dj ]
are the non-symmetric multivariable Hermite polynomials j+ # C[x],
(+ # P), (1)

j+(x)=x ++ :
&P+ or |&|<|+|

v+& \a,
1

2|+ x&

(4.8)
d *j+=((*, ++a\(+))+a(N&1)�2) j+

where the triangularity is defined by the order P on P:

&P+ (&, + # P) � {
(i) &+{++ and &+<d ++

(ii) &+=++ and the first
non-vanishing difference
+j&&j>0

(4.9)

We denote by w+ the shortest element of W such that w&1
+ (+) # P+ to

define \(+) :=w+(\). All the eigenspaces of the Cherednik operators [dj ]
are one-dimensional in the sense that the eigenvalues of [dj ] are non-
degenerate. One sees that the polynomials (4.8) are not symmetric under
the exchange of variables [xj ]. Applying the coordinate exchange oper-
ators [Kj j+1 | j # I ] to the non-symmetric Hermite polynomials j+ , (+ # P),
we find that

Kj j+1 j+={
a

(:6
j , ++a\(+))

j++ jsj (+) , if (:6
j , +)<0

j+ , if (:6
j , +) =0

a
(:6

j , ++a\(+))
j++

(:6
j , ++a\(+)) 2&a2

(:6
j , ++a\(+)) 2 jsj (+) ,

if (:6
j , +)>0

Since [dj ] are Hermitian operators, the polynomials j+ are proved to be
orthogonal with respect to the inner product (3.4), i.e., ( j+ , j&) a, |=
$+& & j+&2. In fact, the nonsymmetric multivariable Hermite polynomials
form an orthogonal basis in C[x].

We present the Rodrigues formula which produces the non-symmetric
Hermite polynomials.(32, 33) We introduce the Knop�Sahi operators [e, e*](11)

and the braid operators [Sj | j # I8 ] defined by

e :=:1K1, 2K2, 3 } } } KN&1, N , e*=KN&1, N } } } K2, 3 K1, 2:1*
(4.10)

Sj :=[Kj j+1 , dj]
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The operators [e, e*] were first introduced by Baker and Forrester.(2) Use-
ful relations among those operators are

SjS j+1Sj =Sj+1S jS j+1 , for 1� j�N&2

S je*=e*Sj+1 , for 1� j�N&2, SN&1(e*)2=(e*)2 S1

S 2
j =a2&(d j&dj+1)2, for j # I8

S j*= &S j , for j # I8 , e*e=dN (4.11)

and

Sj dj =dj+1S j , for j # I8
(4.12)

dje*=e*dj+1 , for j # I8 , dNe*=e*(d1+1)

The first relation in (4.11) is called braid relation.(34) The relations (4.12)
indicate that the operators [Sj , e*] intertwine the eigenspaces of [dj ]. We
define the raising operators [A*+ | + # P+] by

A*+ :=(A1*) +1&+2 (A2*) +2&+3 } } } (A*N) +N

(4.13)
Aj* :=(S j Sj+1 } } } SN&1e*) j for j # I

From the relations which are obtained from (4.11) and (4.12),

djAk*={Ak*(dj+1),
Ak*dj ,

if 1� j�k
if k< j�N (4.14)

[Aj* , Ak*]=0, for j, k # I

we see that A*+ j& , (+, & # P+) coincides with j++& up to a constant factor.
Hence we obtain the joint eigenvectors of [dj ],

}~ + :=A*+ j0=c+ j+ , for + # P+
(4.15)

dj }~ + = (+j+a(N& j)) }~ +=((=j , ++a\) +a(N&1)�2) }~ +

where j0=1 is the reference state. Since all the eigenspaces of [dj ] are one-
dimensional, we can identify }~ + , (+ # P+) with the non-symmetric multi-
variable Hermite polynomials with a partition + # P+ up to a constant factor.
The coefficients of the top term of }~ + in (4.15) are directly calculated as

c+ := `
: # R+

`
(:6, +)

l=1

(l+a(:6, \) ) (4.16)
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To construct the non-symmetric multivariable Hermite polynomials with a
composition + # P, we apply the braid operators to the eigenvector j+ with
a partition ++ # P+ lying in W(+),

j+=c&1
w+

Sw+
j++ , cw+

:= `
: # Rw+

(:6, +++a\)2&a2

(:6, +++a\)
(4.17)

where Sw+
:=S jl

} } } Sj2
Sj1

is determined by a shortest expression w=
sil

} } } si2
si1

. We thus obtain the Rodrigues formula for the non-symmetric
multivariable Hermite polynomials with a generic composition +=w+(++)
(#P),

j+=c&1
w+

c&1
+ Sw+

A*++ j0 (4.18)

Then the nonsymmetric orthogonal basis ,+ , (+ # P) of the Calogero model
with distinguishable particles is given by

,+(x)=,g(x) j+(x)=,g(x) c&1
w+

c&1
+ Sw+

A*++ j0(x) (4.19)

We evaluate the square norm of the non-symmetric basis ,+ , (+ # P),

&,+&2 :=|
�

&�
`
j # I

dxj |,+(x)|2=( j+ , j+) a, |

To this end, we consider square norm of the non-symmetric multivariable
Hermite polynomial j+ with respect to the inner product (3.4) through its
Rodrigues formula. First, we calculate the square norm of j+ with a parti-
tion + # P+ . The adjoint operators of the raising operators [A*+] with
respect to the inner product (3.4) are given by

A+ :=A+N
N } } } A+2&+3

2 A+1&+2
1 , for + # P+

(4.20)
Aj = (eS*N&1 } } } S*j+1S j*) j, for j # I

Using the square norm of the reference state,

(1, 1) a, |=
(2?)N�2

(2|)1�2 N(Na+(1&a)) `
j # I

1 (1+ ja)
1 (1+a)

(4.21)
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which is a limiting case of the Selberg integral, we obtain

( j+ , j+) a, |

=c&2
+ (A*+ j0 , A*+ j0) a, |

=c&2
+ ( j0 , A+A*+ j0) a, |

=
(2?)N�2

(2|)1�2 N(Na+(1&a)) `
j # I

1 (+ j+1+a(N& j ))

_\ `
N

k= j+1

1 (+j&+k+1+a(k& j+1)) 1 (+ j&+k+1+a(k& j&1))
1 (+j&+k+1+a(k& j ))2 +

=
(2?)N�2

(2|)1�2 N(Na+(1&a)) `
j # I

1 ((=j , ++a\) +1+a(N&1)�2)

_ `
: # R+

1 ((:6, ++a\)+a+1) 1 ((:6, ++a\) &a+1)
1 ((:6, ++a\) +1)2 (4.22)

for + # P+ . Next, we calculate the square norm of j+ with a general com-
position + # P. The quadratic relations of [S j ] in (4.11) and the formula
(4.17) lead to the following relations:

( j+ , j+) a, |

( j++ , j++) a, |
= `

: # Rw+

(:6, +++a\) 2

(:6, +++a\)2&a2 (4.23)

Equation (4.23) with (4.22) gives the square norm of j+ with + # P.
Now we discuss the relationship between the symmetric basis con-

structed in the previous section and the non-symmetric one. One sees that
the non-symmetric multivariable Hermite polynomial with a composition
lying in the same W-orbit has the same eigenvalue of the similarity trans-
formed Hamiltonian (4.7),

HC j+=| |++| j+ , for + # W(++), ++ # P+ (4.24)

We take the following linear combination of j+ , (+ # W(++), ++ # P+):

J++= :
+ # W(++)

b+++ j+

(4.25)

b+++= `
: # Rw+

(: 6 , +++a\)&a
(: 6 , +++a\)

whose coefficients b+++ are determined by the conditions Kj j+1J++=J++ for
all j # I8 . The polynomials J+ , (+ # P+) are nothing else but the multi-
variable Hermite (Hi�Jack) polynomials, as is seen from J++ # C[x]W and
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their orthogonality with respect to the inner product (3.4). Thus we recover
the symmetric basis 8+ , (+ # P+) of the Calogero model (1.1),

8+(x)=,g(x) :
+ # W(++)

b+++c&1
w c&1

+ Sw+
A*++ j0(x) (4.26)

We evaluate the square norm of the symmetric basis ,+ , (+ # P+),

&8+ &2 :=|
�

&�
`
j # I

dx j |8+(x)|2=(J+ , J+) a, |

To do this, we show a new proof of the inner product identity for the mul-
tivariable Hermite polynomials J+ through symmetrization of the square
norms of the non-symmetric multivariable Hermite polynomials j+ . In
relating the square norm of the non-symmetric basis to that of the sym-
metric basis, the following identity is useful:

:
+ # W(++)

`
: # Rw+

(:6, +++a\) &a
(:6, +++a\) +a

= `
: # R+

(:6, +++a\)
(:6, +++a\)+a

(4.27)

We proved this identity (4.27) in our previous paper(17) to establish sym-
metrization of the nonsymmetric Macdonald polynomials. By use of the
orthogonality of j+ , the square norm ( j+ , j+) a, | (4.22), (4.23) and the
relation (4.25), we obtain

(J++ , J++) a, |

= :
+ # W(++)

(b+++)2 ( j+ , j+)a, |

= :
+ # W(++)

(b+++)2 ( j+ , j+) a, |

( j++ , j++) a, |
( j++ , j++) a, |

= :
+ # W(++)

`
: # Rw+

(: 6 , +++a\)&a
(: 6 , +++a\)+a

( j++ , j++) a, |

= `
: # R+

(: 6 , +++a\)
(: 6 , +++a\) +a

( j++ , j++) a, |

=
(2?)N�2

(2|)1�2 N(Na+(1&a)) `
j # I

1 (++
j +1+a(N& j ))

_ `
1� j<k�N

1 (++
j &++

k +a(k& j+1)) 1 (++
j &++

k +a(k& j&1)+1)

1 (++
j &++

k +a(k& j )) 1 (++
j&++

k +a(k& j )+1)

(4.28)
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The square norms of the multivariable Hermite polynomials have been also
obtained by other methods.(6, 10) Our symmetrization method can be
applied in a systematic manner to other polynomials.(17, 21)

5. SUMMARY

We summarize the results. First, we have studied the symmetric
orthogonal basis of the Calogero model. The commutative conserved
operators of the Calogero model are obtained through the Dunkl�Chered-
nik operator formulation. The multivariable Hermite (Hi�Jack) polyno-
mials are defined as the joint eigenvectors of the commutative operators I1

and I2 . We have presented the Rodrigues formula for the multivariable
Hermite polynomials. The explicit formula enables us to prove that the
expansion coefficients are polynomials of a and 1�2| with integer coefficients
(integrality). Second, we have studied the non-symmetric orthogonal basis
of the Calogero model with distinguishable particles and have clarified the
relationship with the symmetric basis. The Rodrigues formula also exists
for the non-symmetric multivariable Hermite polynomials from which the
square norm of the non-symmetric basis is evaluated. Symmetric linear
combinations of the non-symmetric multivariable Hermite polynomials
recover the multivariable Hermite polynomials. We have presented a new
proof of the square norms of the symmetric basis through symmetrization
of the non-symmetric counterparts.

To conclude this paper, two comments are in order:

(i) Although some of the results are known, a consistent presentation
is new.

(ii) As a typical example of quantum integrable particle systems with
long-range interactions, we have mostly discussed the Calogero model
(1.1). However, the method is general and is applicable to other polyno-
mials.(17�21, 33)
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